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Abstract: Amyloid diseases such as Alzheimer’s and thrombosis are characterized by an 
aberrant assembly of specific proteins or protein fragments into fibrils and plaques that are 
deposited in various tissues and organs. The single-domain fragment of a camelid antibody 
was reported to be able to combat against wild-type human lysozyme for inhibiting in-vitro 
aggregations of the amyloidogenic variant (D67H). The present study is aimed at 
elucidating the unbinding mechanics between the D67H lysozyme and VHH HL6 antibody 
fragment by using steered molecular dynamics (SMD) simulations on a nanosecond scale 
with different pulling velocities. The results of the simulation indicated that stretching 
forces of more than two nano Newton (nN) were required to dissociate the protein-
antibody system, and the hydrogen bond dissociation pathways were computed. 
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1. Introduction 

Alzheimer’s, an amyloid disease [1], was first identified in 1906 by Alois Alzheimer, a German 
neurological scientist. He observed plaques and neurofibrillary tangles in the pathological anatomical 
image of the brain of a female patient, and found that these would block the communications and the 
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signal transmissions between nerves, a major cause of the progressive memory loss associated with the 
disease. The cause of the formation of neurofibrillary tangles is still unclear, while the formation of 
plaque is known to be induced by specific proteins, such as mutated lysozymes, aggregating with each 
other followed by their precipitation to form plaques in the brain. In 2003, Dumoulin [2] demonstrated 
in vitro that the Camelid VHH HL6 monoclonal antibody was able to effectively inhibit the 
aggregation of mutated lysozymes (I56T, F57I, W74R, and D67H) that would lead to the formation of 
fibrils or plaques and then cause amyloid diseases. The Camelid VHH HL6 antibody is the heavy 
chain of the antibody molecule, which shows particularly significant inhibition for the mutated 
lysozymes D67H and I56T The cAb-HuL6 antibody is a fragment of heavy-chain camel antibody with 
high specificity for human lysozyme, and the details of the three dimensional structure of the 
lysozyme-antibody complex can be found in Dumoulin et al. [3].  

With regard to the simulation of amyloids, Nussinov’s group has done a lot of research on topics 
such as the short peptide amyloid organization [4] and the amyloid structural formation and assembly 
[5]. However, the present study focuses on steered molecular dynamics (SMD) simulations on model 
systems of lysozyme-antibody complex structures on c-terminal end-to-end extensions. Steered 
molecular dynamics was first introduced by Grubmuller [6] in 1996, and is a way to imitate the use of 
an atomic force microscope to detect the mutual interaction between two objects. SMD induces 
unbinding of ligands and conformational changes in biomolecules on time scales accessible to 
molecular dynamics simulations. Time-dependent external forces are applied to a system, and the 
responses of the system are analyzed. SMD has already provided important qualitative insights into 
biologically relevant problems, as demonstrated by various applications ranging from identification of 
ligand binding [7] and protein-protein interaction pathways [8] to explanation of the elastic properties 
of proteins. Detailed analysis of the SMD simulations on model systems of lysozyme-antibody 
complex structures reveals the range of the alteration of lysozyme-antibody hydrogen bond numbers, 
which are the pulling forces in the SMD extensions process. 

2. Material and Methods 

The present study used the X-ray structure (PDB ID: 1op9) of the lysozyme–antibody complex 
published in the Protein Data Bank by Dumoulin [2] as the initial model. The antibody is a protein 
composed of 121 amino acids, while lysozyme is a protein made of 130 amino acids. The detailed 
calculation model is given in Figure 1. 

Calculations were performed with the NAMD [9] and CHARMM [10] programs using the 
CHARMM27 all-hydrogen amino acid parameters [10]. The initial structure of the lysozyme-antibody 
was overlaid with a pre-equilibrated solvent box of the TIP3P water model (the size of the solvent box 
size was 15.4 × 13.5 × 7.5 nm3) and chorine ions. All water molecules within 0.19 nm of lysozyme-
antibody atoms were deleted and chorine ions added at random positions in the box in order to render 
the system electrostatically neutral. The size of the simulation system was 15.4 × 13.5 × 7.5 nm3, and it 
included 48,183 TIP3P water molecules. All MD simulations were performed in the isobaric, 
isothermal ensemble [11] with the simulation temperature was equal to 310 K, unless noted, using the 
verlet integrator, an integration time step of 0.002 ps and SHAKE [12] of all covalent bonds involving 
hydrogen atoms. In electrostatic interactions, atom-based truncation was undertaken individually using 
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the PME method. The complex structures were minimized for 10,000 conjugate gradient steps. The 
minimized complex structures were then subjected to a 0.6 ns isothermal, constant volume MD 
simulation. The final structures from these simulations were then used to initiate the SMD 
calculations. 

Steered molecular dynamics is based on the traditional molecular dynamics with the harmonic 
potential added on the atom or its aggregation. The complete harmonic potential function is  
illustrated below: 

2)(
2
1 →→

−×= rtvKU hharmonic  (1)

where Kh represents the force constant of the harmonic potential function; 
→

v  represents the pulling 
velocity of a virtual atom; t and r represent the simulation time and the coordinate of the atom or its 
aggregation with an additional action on itself. For the SMD simulation settings, the CA atom of the 
121st amino acid of the antibody was fixed first as a reference point. The additional harmonic potential 
function was then added to the CA atom of the 130th amino acid of lysozyme with the force constant 
Kh of 4.32 kcal/(mol Å2). The 6 ns NVT ensemble simulation was conducted independently at pulling 
velocities of 0.00005, 0.00009, 0.00015, 0.00030, and 0.00090 Å per time-step. 

Figure 1. Schematic model of the steered molecular dynamics simulation.  

 

3. Results and Discussion 

Table 1 illustrates the atom types of the hydrogen bond donors and acceptors of the CHARMM 
force field, showing the results of the analysis of the radial distribution function (RDF) of the 
hydrogen bond donors-acceptors between two protein molecules. As shown in Figure 2, two strong 
hydrogen bonds were found at 2.2 and 2.4 Å, indicating the existence of such bonds between the 
proteins. The atoms of hydrogen bond formed are listed in Table 2. The results of the steered 
molecular dynamics simulation are shown in Figure 3, which also provides the strengths of forces 
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required to dissociate two proteins under various pulling velocities. Using the data from Table 2, the 
number of existing hydrogen bonds (with a distance between the hydrogen bond donor and acceptor of 
less than 0.3 nm) under different pulling velocities was analyzed, and the results are shown in Figure 4, 
while the Snapshots (pulling rates: 0.00005 Å/time-step) are shown in Figure 5. 

Table 1. The atom types of the hydrogen bonds (CHARMM force field). 

Hydrogen Bond Atom type (Acceptor / Donor) 

Acceptor O, OD1, OD2, OE1,  
OE2, OG, OH, NE2, ND1 

Donor HN, HE, HE1, HE2, HH,  
HH11, HG1, HD1, HH12,  
HH21, HH22, HD21, HD22,  
HE21, HE22, HZ1, HZ2, HZ3 

Table 2. The atoms of hydrogen bond formation. 

A chain  
(antibody) 

B chain 
(lysozyme) 

HB (ID) 

number of atom simplified term 1 

1423 3254 A1423:B3254 2 

1604 3330 A1604:B3330 3 

1603 3330 A1603:B3330 4 

1603 3333 A1603:B3333 5 

1554 3334 A1554:B3334 6 

0727 3175 A0727:B3175 7 

1444 3124 A1444:B3124 8 

Figure 2. The profile of hydrogen bond RDF in the lysozyme-antibody complex  
simulation system. 
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Figure 3. Corresponding force curves of pulling rates: 0.00005, 0.00009, 0.00015, 
0.00030, 0.00090 Å/time-step. 

 

At the pulling velocity of 0.00005 Å per time-step, Figures 3 and 4 and Table 3 show that there 
were four peaks whose value was near 2 nN at the simulation times of 2 (HB ID: 3, 5, 6), 3.2 (HB ID: 
3, 5, 6), 4 (HB ID: 3), and 5 (HB ID: Null) ns. The first three peaks caused the sudden decline in the 
number of hydrogen bonds between the two proteins, while the fourth peak induced the breakdown of 
the remaining van der Waals and Coulombic interactions between the two proteins. At the pulling 
velocity of 0.00009 Å per time-step, there were two major peaks at 1.8 (HB ID: 3, 5) and 2.7 (HB ID: 
Null) ns, with the first peak responsible for the disruption of the hydrogen bonds between two proteins 
and the second peak for the breakdown of the van der Waals and Coulombic interactions between the 
two. At the pulling velocity of 0.00015 Å per time-step, there were three major peaks at 0.9 (HB ID: 1, 
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3, 4, 5, 6), 1.5 (HB ID: 3, 5, 6), and 1.8 (HB ID: Null) ns, with the first two peaks as the major forces 
to disrupt the hydrogen bonds and the last one disrupting the non-contact interactions. At the pulling 
velocities of 0.00030 and 0.00090 Å per time-step, there are two peaks, at 0.2 (HB ID: 1, 3, 4, 5, 6) 
and 0.5 (HB ID: Null) ns, causing the interruption of non-contact and hydrogen bonding interactions 
between two proteins simultaneously. 

Figure 4. Calculating the amount of inter-molecular hydrogen bonds from pulling rates: 
0.00005, 0.00009, 0.00015, 0.00030, 0.00090 Å/time-step. 

 

Figure 5. Snapshots from pulling rates: 0.00005 Å/time-step. Lysozye (red) and VHH HL6 
antibody (blue). 
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Table 3. The hydrogen bonds trajectories and simulations.  

Pulling velocity 
(Å per time-step) 

Simulations 
time (ns) 

Existing hydrogen 
bonds (HB (ID)) 

0.00005 2 3, 5, 6 
 3.2 3, 5, 6 
 4 3 
 5 Null 

0.00009 1.8 3, 5 
 2.7 Null 

0.00015 0.9 1, 3, 4 ,5, 6 
 1.5 3, 5, 6 
 1.8 Null 

0.00030 0.2 1, 3, 4 ,5, 6 
 0.5 3, 5, 6 

0.00090 0.2 1, 3, 4 ,5, 6 
 0.5 3, 5, 6 

Our simulation results suggest that the pulling velocities required at least 2 nN interactions to 
dissociate the lysozyme-antibody complex system and the unfolding pathway of two proteins could be 
clearly observed at the pulling velocity of 0.00005 Å per time-step. When the antibody was close to 
the lyszyme protein, the five hydrogen bonds (HB ID: 1, 3, 4, 5, 6) may play important roles in 
increasing the binding affinities of the complex system and make the antibody-lysozyme bind together 
more easily. After the binding of the antibody-lysozyme, the three hydrogen bonds (HB ID: 2, 7, 8) 
were still a key reason why the system remained stable. 

4. Conclusions 

The present study used steered molecular dynamics (SMD) to simulate the interactions between 
lysozyme and the Camelid VHH HL6 antibody. Our results show that the interaction of approximately 
2 nN between two proteins and the eight hydrogen bonds may play important roles in increasing the 
binding affinities of the complex system and causing the antibody-lysozyme to bind together easily. 
However, the results should be treated with caution. With regard to protein dynamics, it is usually 
necessary to study an equilibrium ensemble of conformation; however, because we investigated a 
single equilibrated initial condition set in this study, the results are likely missing physically relevant 
entropic contributions. Furthermore, theoretically, it is very difficult for molecular dynamics 
simulations to use the fast pulling speeds used in this study. This is because there may be microstates 
which exist in the equilibrium ensemble where the hydrogen bonding network changes significantly in 
the large complex, and both members of the complex are then likely to undergo substantial 
conformational fluctuations, which are possibly coupled in a complex behavior. Therefore, a 
simulation just using a single initial conformation can not capture this complex phenomenon, and thus 
may underestimate the rupture force.  
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It should also be noted that the simulations used in this study required a large amount of time. Due 
to limited computational resources of our organization, all simulations were performed with only a 32-
node (AMD Opteron 248 2.2GHz) PC cluster, and each SMD simulation (6 ns) case needed more than 
two months to be calculated. However, we think we have presented a meaningful preliminary test in 
this study, and building on this base, we would like to continue with this research in order to confirm 
the hydrogen bond dissociation pathway. 
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